Forschungsbericht 2016



High temperature broadband reflectors

Institut: E-12
Projektleitung: Manfred Eich
Stellvertretende Projektleitung: Alexander Petrov
Mitarbeiter/innen: Pavel Dyachenko
Laufzeit: 01.06.2012 — 31.07.2016
Finanzierung:Deutsche Forschungsgemeinschaft (DFG)

Introduction

The heat radiation contribution to the total heat transfer in gas turbine becomes significant at high temperature. The issue is raised by the transparency of some ceramics used in the thermal barrier coating (TBC) in the infra-red (IR) region. Especially for the widely used TBC material: yittria-stabilized zirconia (YSZ), is fairly transparent in the wavelength region of 1-6mm, which corresponds to the region of maximum blackbody emission for operating temperature of present gas turbine engines [1]. Thus, the combination of high IR radiation and low absorption suggests that the radiation at high temperature may compete with the solid conduction for the heat transport across the coating.

The recent progress in photonic crystals (PhCs) allows for the efficient controls of electromagnetic waves. PhCs are structures where the periodicity in dielectric prevents electromagnetic wave from propagation through the structure due to Bragg reflection. If the PhCs combine with the low thermal conductivity ceramic materials, the resulting high temperature photonic crystals could be attractive and promising for control of total heat transport at temperature > 1000°C. Thus the concept of 3D PhCs for high temperature heat radiation reflector is proposed. The application can also be extended to the spectral filter for thermo-photovoltaic (TPV). 

Goals

The high temperature photonic crystal research in the institute for Optical and Electronic Materials is concentrated on designing a broadband IR radiation reflector that can operate in high temperature environment. The goal is to realize such a high temperature photonic structure with following properties:

  • Broadband reflection over the wavelength region of 1-6 mm.
     
  • Based solely on low thermal conductivity and high thermal stability ceramic materials.
     
  • Highly reflective for all incidence angles and polarizations.
     
  • Ability to resist high temperature during operation without having a significant alteration of its photonic properties.

References

1.   Shklover, V., Braginsky, L., Witz, G., Mishrikey, M. & Hafner, C. High-Temperature Photonic Structures. Thermal Barrier Coatings, Infrared Sources and Other Applications, J. Comput. Theor. Nanos. 5, 862–893, (2008).

Publikationen

  • Dyachenko, P.N.; do Rosário, Jefferson J.; Leib, E.W.; Petrov, A.Y.; Kubrin, R.; Schneider, G.A.; Weller, H.; Vossmeyer, T.; and Eich, M.: Ceramic Photonic Glass for Broadband Omnidirectional Reflection. ACS Photonics, 1(11): S. 1127–1133, Sep 2014.
  • do Rosario, J.J.; Dyachenko, P.N.; Kubrin, R.; Pasquarelli, R.M.; Petrov, A.Y.; Eich, M.; and Schneider, G.A.: Facile deposition of YSZ-inverse photonic glass films. ACS Applied Materials & Interfaces, 6(15): S. 12335–12345, Jul 2014.
  • Schlicke, H.; Battista, D.; Kunze, S.; Schröter, C.J.; Eich, M.; and Vossmeyer, T.;: Freestanding Membranes of Cross-Linked Gold Nanoparticles: Novel Functional Materials for Electrostatic Actuators. ACS Applied Materials & Interfaces, 2015.
  • Calus, S.; Kityk, A.V.; Eich, M.; and Huber, P.;: Inhomogeneous relaxation dynamics and phase behaviour of a liquid crystal confined in a nanoporous solid. RSC Soft Matter, 2015.
  • Lee, H.S.; Kubrin, R.; Zierold, R.; Petrov, A.Y.; Nielsch, K.; Schneider, G.A.; and Eich, M.: Photonic properties of titania inverse opal heterostructures. Optical Materials Express, vol. 3(no. 8): S. pp. 1007–1019, August 2013.
  • do Rosário, J.J.; Lilleodden, E.T.; Waleczek, M.; Kubrin, R.; Petrov, A.Y.; Dyachenko, P.N.; Sabisch, Julian E. C.; Nielsch, K.; Huber, N.; Eich, M.; and Schneider, G.A.;: Self-Assembled Ultra High Strength, Ultra Stiff Mechanical Metamaterials Based on Inverse Opals. Advanced Engineering Materials, 2015.
  • Kubrin, R., Lee, H.S., Zierold, R., Yu. Petrov, A., Janssen, R., Nielsch, K., Eich, M., and Schneider, G.A.: Stacking of ceramic inverse opals with different lattice constants. Journal of the American Ceramic Society, vol. 95(no. 7): S. pp. 2226–2235, July 2012.
  • Calus, S.; Borowik, L.; Kityk, A.V.; Eich, M.; Busch, M.; and Huber, P.;: Thermotropic interface and core relaxation dynamics of liquid crystals in silica glass nanochannels: a dielectric spectroscopy study. Physical Chemistry Chemical Physics, 2015.
  • Dyachenko, P.N.; do Rosário, J.J.; Leib, E.W.; Petrov, A.Y.; Störmer, M.; Weller, H.; Vossmeyer, T.; Schneider, G.A.; and Eich, M.;: Tungsten band edge absorber/emitter based on a monolayer of ceramic microspheres. Optics Express, 2015.
  • Kubrin, R.; do Rosario, J.J.; Lee, H.S.; Mohanty, S.; Subrahmanyam, R.P.; Smirnova, I.; Petrov, A.; Petrov, A.Y.; Eich, M.; and Schneider, G.A.: Vertical Convective Coassembly of Refractory YSZ Inverse Opals from Crystalline Nanoparticles. ACS Applied Materials & Interfaces, vol. 5(no. 24): S. pp. 13146–13152, December 2013.
  • Serebryannikov, A.E.; Lalanne, P.; Petrov, A.Y.; and Ozbay, E.: Wide-angle reflection-mode spatial filtering and splitting with photonic crystal gratings and single-layer rod gratings. Optics Letters, 39(21): S. 6193–6196, Oct 2014.
  • Leib, E.W.; Pasquarelli, R.M.; do Rosario, J.J.; Dyachenko, P.N.; Doring, S.; Puchert, A.; Petrov, A.Y.; Eich, M.; Schneider, G.A.; Janssen, R.; Weller, H.; and Vossmeyer, T.; : Yttria-stabilized zirconia microspheres: novel building blocks for high-temperature photonics. Journal of Materials Chemistry C, 2016.
  • Kubrin, R.; Pasquarelli, R.M.; Waleczek, M.; Lee, H.S.; Zierold, R.; do Rosário, J.J.; Dyachenko, P.N.; Montero Moreno, Josep M.; Petrov, A.Y.; Janssen, R.; Eich, M.; Nielsch, K.; and Schneider, G.A.;: Bottom-up Fabrication of Multilayer Stacks of 3D Photonic Crystals from Titanium Dioxide. ACS Applied Materials & Interfaces, 2016.