New floating-point error estimates			
 	Classical floating-point error estimates are based on a factor gamma n := n eps / (1-n eps) for eps denoting the relative rounding error unit. These Wilkinson-type estimates are used since 50 years. They imply an intrinsic limitation of n eps < 1. We rework classical error estimates by replacing gamma n by n eps for any order of computation. Moreover, the restriction on n is removed so that the new estimates are the first one valid for any problem size. Publikationen- Rump, S.M.; Bünger, F; Jeannerod,C.-P.:  Improved Error Bounds for Floating-Point Products and Horner's Scheme.. to appear in BIT,  2014. , http://www.ti3.tu-harburg.de/paper/rump/RuBueJea14.pdf
 - Rump, S.M.: Computable Error Bounds for Basic Algorithms in Linear Algebra.. submitted for publication, 2014.,  2014. , http://www.ti3.tuhh.de/paper/rump/Ru14c.pdf
 - S.M. Rump: Computable backward error bounds for basic algorithms in linear algebra.. Nonlinear Theory and Its Applications, IEICE(6): S. 1–4,  2015. , http://www.ti3.tuhh.de/paper/rump/Ru14c.pdf
 - Rump, S.M.: Error estimation of floating-point summation and dot product.. BIT Numerical Mathematics, 2012(52(1)): S. 201–220,  2012. 
 - Rump, S.M.: Fast Interval Matrix Multiplication. . Numerical Algorithms, 2012(61(1)): S. 1–34,  2012. 
 - Rump, S.M.; Jeannerod, C.-P.: Improved backward error bounds for LU and Cholesky factorizations. . SIAM. J. Matrix Anal. & Appl. (SIMAX), 2014(35(2)): S. 684–698,  2014. , DOI: doi:10.1137/130927231, http://www.ti3.tuhh.de/paper/rump/RuJea13.pdf
 - Jeannerod, C.-P.; Rump, S.M.: Improved error bounds for inner products in floating-point artihmetic. . SIAM. J. Matrix Anal. & Appl. (SIMAX), 2013(34(2)): S. 338–344,  2013. 
 - Rump, S.M.: Interval Arithmetic Over Finitely Many Endpoints.. BIT Numerical Mathematics, 2012(52(4)): S. 1059–1075,  2012. 
 - Rump, S.M.; Ogita, T.; Oishi, S.: Interval Arithmetic without Changing the Rounding Mode.. submitted for publication, 2013,  2013. 
 - Jeannerod, C.-P.; Rump, S.M.: On relative errors of floating-point operations: optimal bounds and applications.. Preprint, 2014,  2014. 
 - Rump, S.M.; Lange, M.: On the Definition of Unit Roundoff.. submitted for publication,  2014. , http://www.ti3.tuhh.de/paper/rump/RuLa14.pdf
 - Ozaki, K; Bünger, F.; Ogita, T.; Oishi, S.; Rump, S.M.: Simple floating-point filters for the two-dimensional orientation problem.. BIT Numerical Mathematics,  2015. , DOI: 10.1007/s10543-015-0574-9, http://www.ti3.tuhh.de/paper/rump/OzBueOgOiRu15.pdf
 - Rump, S.M.: The componentwise structured and unstructured backward error can be arbitrarily far apart.. submitted for publication, 2014,  2014. , http://www.ti3.tuhh.de/paper/rump/Ru14b.pdf
 - Ozaki, K.; Ogita, T.; Bünger, F.; Oishi, S.: Accelerating interval matrix multiplication by mixed precision arithmetic.. Nonlinear Theory and its Applications, IEICE, 6(3): S. 364-376,  2015. , https://www.jstage.jst.go.jp/article/nolta/6/3/6_364/_article
  		 |